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Chapter 2: Representation formulas for solutions

Exercise 2.1 - [Transport equations and the method of characteristics]: Read §2.1 of [P2].

Exercise 2.2 - [Transport equation with zero order term]: Exercise 2.5.1 of [E].

Exercise 2.3 - [Method of characteristics for linear equations of first order]: Exercise 3.5.4 of [E].

Exercise 2.4 - [Null bicharacteristics and characteristics for second order linear operators]: Given
a general linear partial differential operator of second order

Pu =

n∑
i, j=1

ai j(x)Di ju +

n∑
i=1

bi(x)Diu + cu

with smooth (C∞) coefficients ai j = a ji, bi, c, one defines the principal symbol of P as

σ(x, ξ) =

n∑
i, j=1

ai j(x)ξiξ j.

The null bicharacteristic of P through (x0, ξ0) is defined as the solution curve Γ(s) = (x(s), ξ(s)) which
solves the Hamiltonian system

ẋ = Dξσ

ξ̇ = −Dξσ

with the initial (null) condition
σ(x0, ξ0) = 0.

The curve γ(s) = x(s) is then called a characteristic of P.
• a) The wave operator on Rn

×Rwith coordinates (x, t) has the form P = D2
t −

∑n
j=1 D2

x j
and so

the principal symbol is
σ(x, t, ξ, τ) = τ2

− |ξ|2

and the null initial condition at p0 = (x0, t0, ξ0, τ0) is

τ2
0 − |ξ0|

2 = 0

Find the null bicharacteristic passing through p0. Show that all characteristics through
(x0, t0) are straight lines living on the light cone

Σ0 = {(x, t) ∈ Rn
×R : |t − t0| = |x − x0|}.

• b) The Tricomi operator on R2 with coordinates (x, y) has the form P = yD2
x + D2

y and so the
principal symbol is

σ(x, y, ξ, η) = yξ2 + η2

and the null initial condition at p0 = (x0, y0, ξ0, η0) is

y0ξ
2
0 + η2

0 = 0, y0 ≤ 0.
1
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Find the null bicharacteristic passing through p0. Show that all maximally extended char-
acteristics through (x0, y0) reach the y-axis and form a cusp there.

Exercise 2.5 - [Invariances for the Laplacian]: Exercises 2.5.2 and 2.5.11 of [E] for the invariance with
respect to rotations and inversions. Verify also the other invariances stated in class: translations,
dilations and inversion with respect to spheres (see also the notes [P1]).

Exercise 2.6 - [Estimates on the fundamental solution of the Laplacian]: For Φ(x) = Γ(|x|) the
fundamental solution of ∆ in Rn where

Γ(|x|) =


1

2π
log (|x|) n = 2

1
n(2 − n)ωn

|x|2−n n ≥ 3

find and explicit expreession for the derivatives DiΦ,Di jΦ when x , 0 and use them to verify
Proposition 2.2.1 in the class notes [P2]:

|DiΦ(x)| ≤
1

nωn
|x|1−n; |Di jΦ(x)| ≤

1
ωn
|x|−n.

Generalize the result to find
|DαΦ(x)| ≤ C(n, α)|x|2−n−|α|

with α ∈Nn
0 a multi-index.

Exercise 2.7 - [Green’s second identity]: Check the claim made in class (Proposition 2.2.3): if
u, v ∈ C2(Ω) with ∂Ω ∈ C1 then∫

Ω

(v∆u − u∆v) dx =

∫
∂Ω

(
v
∂u
∂ν
− u

∂v
∂ν

)
dS

where ν is the external unit normal vector.

Exercise 2.8 - [Green’s representation]: Check the claim made in class (Theorem 2.2.2): with Bε(y)
a small ball about the singularity of Φ(· − y), one has

−
∂Φ
∂ν

(· − y)|∂Bε(y) =
1

|∂Bε(y)|

where |∂Bε(y)| is the (n − 1 dimensional) measure of the sphere and ν is the external unit normal
(with respect to Ω \ Bε(y).

Exercise 2.9 - [Symmetry of the Green’s function]: Verify the claim of Proposition 2.2.4 about the
symmetry of the corrector function for the ball BR = BR(0) ; that is, ϕ(x; y) = ϕ(y; x). In this way, one
finds the symmetry of the Green’s function G(x; y) = Γ(|x− y|+ϕ(x; y) which was mentioned in the
sketch of the proof of Theorem 2.2.5 done in class.

Exercise 2.10 - [Solving Dirichlet’s Problem on Balls]: Check the rest of the proof of Theorem 2.2.5
which was sketched in class (see [P2]).

Exercise 2.11 - [Poisson’s integral formula]: Check the claim made in class (Theorem 2.2.4) on the
normal derivative of the Green’s function:

−
∂G
∂ν

(x; y) =
R2
− |y|2

nωnR
1

|x − y|n
, x ∈ ∂BR



3

.

Exercise 2.12 - [Compatibility conditions for the Neumann problem]: Consider the Neumann
problem on a bounded domain Ω with C1 boundary; that is

(NP)


∆u = f in Ω

∂u
∂ν

= h on∂Ω,

with f , h given continuous functions. Prove the following statements about solutions u ∈ C2(Ω) to
(NP):

(CC1) If h = 0 then
∫

Ω

f (x) dx = 0 (i.e. f must have average value zero on Ω);

(CC2) If f = 0 then
∫
∂Ω

h dS(x) = 0 (i.e. h must have average value zero on ∂Ω)

Exercise 2.13 - [Representation formula involving the Neumann function]: Consider the following
representation formula for u ∈ C2(Ω) with Ω a bounded domain with C1 boundary:

(∗) u(y) =

∫
Ω

N(x; y)∆u(x) dx −
∫
∂Ω

N(x : y)
∂u
∂ν

dS(x) +
1
|∂Ω|

∫
∂Ω

u(x) dS(x)

where |∂Ω| is the surface measure of ∂Ω and N(x; y) = Φ(x − y) − ψ(x; y) is the Neumann function
with ψ(·; y) defined as the solution of

(∗∗)


∆xψ(·; y) = 0 in Ω

∂ψ

∂ν
(·; y) =

∂Φ
∂ν

(· − y) −
1
|∂Ω|

on ∂Ω,
∀y ∈ Ω.

a) Show that for each y ∈ Ω the compatibility condition (CC2) of Exercise 2.12 holds for ψ(·; y)
and hence a solution of (∗∗) can exist. On the other hand, without the term −1/|∂Ω| the
corresponding system would not have a classical solution. Hint: Use u ≡ 1 in Green’s

Representation Formula to verify that
∫
∂Ω

∂Φ
∂x

(x − y) dS(x) = 1.

(b) Show that (∗) holds for each y ∈ Ω if there exists a solution ψ(·; u) of (∗∗) for each y ∈ Ω.

Exercise 2.14 - [Divergence form equations, Green’s identities and uniqueness]: Let Ω be a
bounded domain with C1 boundary. Consider the following operator in divergence form

Lu := div [ADu] =

n∑
i, j=1

D j(ai jDiu),

where the coefficients ai j ∈ C1(Ω) are real valued and satisfy the symmetry condition ai j = a ji for
each i, j = 1, . . .n; that is, the matrix valued function A is symmetric.

a) For u, v ∈ C2(Ω) establish the following Green’s identities∫
Ω

vLu dx = −

∫
Ω

〈Dv,ADu〉 dx +

∫
∂Ω

vDνu dS∫
Ω

[vLu − uLv] dx =

∫
∂Ω

[vDνu − uDνv] dS
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where ν is the external unit normal field on ∂Ω and Dνu := 〈ADu, ν〉 defines the conormal
derivative operator on ∂Ω.

(b) If in addition A is non-negative definite; that is, 〈A(x)ξ, ξ〉 ≥ 0 for each x ∈ Ω, ξ ∈ Rn, then the
square root A1/2 of A is well defined symmetric matrix valued function which is continuous
on Ω. Find and justify an additional condition on A such that C2(Ω) solutions of the Dirichet
and Neumann problems{

Lu = f in Ω
u = g on∂Ω and

{
Lu = f in Ω
Dνu = h on∂Ω,

will be unique and unique up to an additive constant respectively.

Exercise 2.15 - [Subharmonic functions and mean value inequalities]: see Exercise 2.5.5 of [E].

Exercise 2.16 - [Pointwise estimates using the maximum principle]: see Exercise 2.5.6 of [E].

Exercise 2.17 - [Estimates from the mean value property]: Let u be harmonic in Ω. For each
Br(x0) ⊂⊂ Ω and for each α ∈Nn

0 , there exists C = C(n, |α|) > 0 such that

|Dαu(x0)| ≤ Cr−n−k
||u||L1(Br(x0)).

(see Theorem 2.2.7 of [E])

Exercise 2.18 - [Liouville’s Theorem]: Let u be harmonic in Rn. If u is bounded, then u is constant
(see Theorem 2.2.8 of [E]).

Exercise 2.19 - [Harnack’s inequality]:
• Let u be harmonic and non negative in Ω. For each domain subdomain V ⊂⊂ Ω, there

exists C = C(V) > 0 such that
sup
V

u ≤ C inf
V

u

(see Theorem 2.2.11 of [E]).
• See Exercise 2.5.7 of [E] for an explicit version by way of the Poisson integral formula.

Exercise 2.20 - [The Dirichlet problem on half-spaces]: see Exercise 2.5.9 of [E].

Exercise 2.21 - [Schwarz reflection principle]: see Exercise 2.5.10 of [E].

Exercise 2.22 - [The heat equation]: Read §2.3 of [P2].

Exercise 2.23 - [Invariances for the heat equation]: see Exercise 2.5.12 of [E]

Exercise 2.24 - [Elementary solutions to the heat equation]: Check Proposition 2.3.1 of [P2]. In
particular, verify that u defined in (2.3.3) has the properties claimed and read the derivation given
in the notes.

Exercise 2.25 - [Solving the Cauchy problem for the heat equation]: Study the proof of Theorem
2.3.1 of [P2].

Exercise 2.26 - [Non homogeneous heat equation]: Read the proof of Theorem 2.3.2 of [E] (which
corresponds to Theorem 2.3.2 of [P2]).

Exercise 2.27 - [Non homogeneous heat equation with zero order term]: see Exercise 2.5.14 of [E].
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Exercise 2.28 - [Mean value property for the heat equation]:
• Read the proof of Theorem 2.3.3 of [E].
• Check the key claim made at the end of the proof; that is,

1
rn

∫
E(r)

|y|2

s2 dsdy =

∫
E(1)

|y|2

s2 dsdy = 4

Exercise 2.29 - [Uniqueness by the energy method]: Using the multiplier u, show that there is
at most one solution u ∈ C2

1(ΩT) of the Cauchy-Dirichlet problem for the non homogeneous heat
equation (see Theorem 2.3.10 of [E]).

Exercise 2.30 - [Regularity and estimates for the heat equation]: Read the proofs of the Theorems
2.3.8 and 2.3.9 of [E].

Exercise 2.31 - [Backwards uniqueness for the heat equation]: Read the proof of Theorem 2.3.11
of [E].

Exercise 2.32 - [The wave equation]: Read §2.4 of [P2].

Exercise 2.33 - [D’Alembert’s formula revisited]: see Exercise 2.5.19 of [E].

Exercise 2.34 - [Stokes’ rule]: see Exercise 2.5.18 of [E]

Exercise 2.35 - [Method of reflections]: Check the claims made in Observation 2.4.2 of the class
notes [P2]; that is that the formula

u(x, t) =


1
2

[g(x + t) + g(x − t)] +
1
2

∫ x+t

x−t
h(y) dy x ≥ t ≥ 0

1
2

[g(t + x) − g(t − x)] +
1
2

∫ t+x

t−x
h(y) dy 0 ≤ x ≤ t

gives a solution of the problem

utt − uxx = 0 in (0,+∞) × (0,+∞)

u(x, 0) = g(x); ut(x, 0) = h(x) per x ∈ (0,+∞)

u(0, t) = 0 per t ∈ (0,+∞)

Exercise 2.36 - [Method of spherical means]: Prove Lemma 2.4.1 of [P2] concerning the reduction
to the Euler-Poisson-Darboux equation (see Lemma 2.4.1 of [E]).

Exercise 2.37 - [Poisson’s formula]: Finish the proof of Theorem 2.4.1 of [P2]; (see pp. 73-74 of [E]).

Exercise 2.38 - [Duhamel’s principle]: Prove Theorem 2.4.4 of [E] in the cases n = 1, 2, 3.

Exercise 2.39 - [Energy methods]: Study the proofs of Theorems 2.4.3 and 2.4.4 of [P2].

Exercise 2.40 - [Equipartition of energy]: see Exercise 2.5.24 of [E].
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