PDE Exercises

C.L. in Matematica e Matematica per le Applicazioni

Prof. Kevin R. Payne

Chapter 2: Representation formulas for solutions

Exercise 2.1 - [Transport equations and the method of characteristics]: Read §2.1 of [P2].
Exercise 2.2 - [Transport equation with zero order term]: Exercise 2.5.1 of [E].
Exercise 2.3 - [Method of characteristics for linear equations of first order]: Exercise 3.5.4 of [E].

Exercise 2.4 - [Null bicharacteristics and characteristics for second order linear operators]: Given
a general linear partial differential operator of second order

n

n
Pu = Z a;j(x)Djju + Z bi(x)Dju + cu
i,j=1 i=1
with smooth (C*) coefficients a;; = aj;, b;, ¢, one defines the principal symbol of P as

n

o(x, &) = Z a;ij(x)&ic .

i,j=1
The null bicharacteristic of P through (xo, &o) is defined as the solution curve I'(s) = (x(s), &(s)) which
solves the Hamiltonian system

X =D¢o
cf =-Dgo
with the initial (null) condition
o(xo, &o) = 0.

The curve y(s) = x(s) is then called a characteristic of P.
e a) The wave operator on R" x R with coordinates (x, t) has the form P = D? — ']?:1 D%J, and so
the principal symbol is
o(xt,&,7) = 7° - &P
and the null initial condition at py = (xo, to, o, T0) is
75— 1ol = 0

Find the null bicharacteristic passing through py. Show that all characteristics through
(xo, to) are straight lines living on the light cone

Yo={(x,t) e R"XR: |t —ty| = |x — xol}.
e b) The Tricomi operator on IR? with coordinates (x, y) has the form P = yD?2 + D§ and so the
principal symbol is
a(x,y, &) = y& + 1
and the null initial condition at pg = (xo, Yo, &0, o) is

Y&y +15=0, yo <0.
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Find the null bicharacteristic passing through po. Show that all maximally extended char-
acteristics through (xo, yo) reach the y-axis and form a cusp there.

Exercise 2.5 - [Invariances for the Laplacian]: Exercises 2.5.2 and 2.5.11 of [E] for the invariance with
respect to rotations and inversions. Verify also the other invariances stated in class: translations,
dilations and inversion with respect to spheres (see also the notes [P1]).

Exercise 2.6 - [Estimates on the fundamental solution of the Laplacian]: For ®(x) = I'(|x|) the
fundamental solution of A in IR” where

1
>, 1og (Ix) n=2
[(lx]) =

2-n >3
n2 — n)wy o "=

find and explicit expreession for the derivatives D;®, D;;® when x # 0 and use them to verify
Proposition 2.2.1 in the class notes [P2]:

1 _ 1
D) < —|x'™"; ID;®P(x)| < — ™
n

nwy,
Generalize the result to find

ID*®(x)| < Cm, )l
with & € INjj a multi-index.

Exercise 2.7 - [Green’s second identity]: Check the claim made in class (Proposition 2.2.3): if
u,v € C2(Q) with 9Q € C! then

f (vAu — uAv) dx = f (Ua—u - u@) ds
Q 00 ov v

where v is the external unit normal vector.

Exercise 2.8 - [Green’s representation]: Check the claim made in class (Theorem 2.2.2): with B(y)
a small ball about the singularity of ®(- — y), one has

_(92( — ) — L
oV Y)I9Be(y) |8B€(y)|

where [0B(y)| is the (n — 1 dimensional) measure of the sphere and v is the external unit normal
(with respect to Q \ Be(y).

Exercise 2.9 - [Symmetry of the Green’s function]: Verify the claim of Proposition 2.2.4 about the
symmetry of the corrector function for the ball B = Br(0) ; that is, @(x; y) = @(y; x). In this way, one
finds the symmetry of the Green’s function G(x; y) = I'(|x — y| + ¢(x; y) which was mentioned in the
sketch of the proof of Theorem 2.2.5 done in class.

Exercise 2.10 - [Solving Dirichlet’s Problem on Balls]: Check the rest of the proof of Theorem 2.2.5
which was sketched in class (see [P2]).

Exercise 2.11 - [Poisson’s integral formula]: Check the claim made in class (Theorem 2.2.4) on the
normal derivative of the Green’s function:
oG, R-lyP” 1

_E(x,y)— onR |x—y|”' X € dBR




Exercise 2.12 - [Compatibility conditions for the Neumann problem]: Consider the Neumann
problem on a bounded domain Q with C! boundary; that is

Au=f inQ
(NP)

8_u =h ondQ,

ov

with f, h given continuous functions. Prove the following statements about solutions u € C(Q) to
(NP):

(CC1) If h = 0 then f f(x)dx = 0 (i.e. f must have average value zero on Q);
Q

(CC2) If f = 0 then f hdS(x) = 0 (i.e. h must have average value zero on JQ)
2Q

Exercise 2.13 - [Representation formula involving the Neumann function]: Consider the following
representation formula for u € C?(Q) with Q a bounded domain with C! boundary:

0 1
(*) uy) = LN(X} Y)Au(x) dx — faQ N(x: y)a—z dS(x) + m faQ u(x) dS(x)

where [dQ)] is the surface measure of dQ and N(x;y) = P(x — y) — Y(x; y) is the Neumann function
with ¢(; y) defined as the solution of

Axl,b(‘} y) =0 in Q
5,00 =25~y - ET 20,

a) Show that for each y € Q the compatibility condition (CC2) of Exercise 2.12 holds for y(-; y)
and hence a solution of (**) can exist. On the other hand, without the term —1/|0Q)| the
corresponding system would not have a classical solution. Hint: Use u = 1 in Green’s

Representation Formula to verify that f aa%(x - y)dS(x) = 1.
2Q
(b) Show that (x) holds for each y € Q) if there exists a solution 1(-; u) of (++) for each y € Q.

Exercise 2.14 - [Divergence form equations, Green’s identities and uniqueness]: Let () be a
bounded domain with C! boundary. Consider the following operator in divergence form

n
Lu := div[ADu] = Z Dj(a;jDiu),
ij=1

where the coefficients a;; € CY(Q) are real valued and satisfy the symmetry condition ajj = aj; for
each i, j =1,...n; that is, the matrix valued function A is symmetric.

a) For u,v € C2(Q) establish the following Green'’s identities

f vludx = —f(Dv,ADu) dx + f vD,udS
Q Q 9Q

f [vLu — uLv] dx = f [vDyu — uD,v] dS
0

2Q



where v is the external unit normal field on dQ and D,u := (ADu, v) defines the conormal
derivative operator on Q).

(b) If in addition A is non-negative definite; that is, (A(x)<&, &) > 0 for each x € Q, £ € R”, then the
square root A'/2 of A is well defined symmetric matrix valued function which is continuous

on Q. Find and justify an additional condition on A such that C2(Q) solutions of the Dirichet
and Neumann problems

Lu=f inQ d Lu=f inQ
u=g ondQ an D,u=h ondQ,

will be unique and unique up to an additive constant respectively.

Exercise 2.15 - [Subharmonic functions and mean value inequalities]: see Exercise 2.5.5 of [E].
Exercise 2.16 - [Pointwise estimates using the maximum principlel: see Exercise 2.5.6 of [E].

Exercise 2.17 - [Estimates from the mean value propertyl: Let u be harmonic in Q. For each
B, (xg) cC Q and for each a € IN%, there exists C = C(n, |a|) > 0 such that

ID%u(xo)| < CV—”_kHMHLl(B,(xO))-

(see Theorem 2.2.7 of [E])

Exercise 2.18 - [Liouville’s Theorem]: Let u be harmonic in IR”. If u is bounded, then u is constant
(see Theorem 2.2.8 of [E]).

Exercise 2.19 - [Harnack’s inequality]:
e Let u be harmonic and non negative in Q. For each domain subdomain V cC (), there

exists C = C(V) > 0 such that

supu < Cinfu
v %

(see Theorem 2.2.11 of [E]).

e See Exercise 2.5.7 of [E] for an explicit version by way of the Poisson integral formula.

Exercise 2.20 - [The Dirichlet problem on half-spaces]: see Exercise 2.5.9 of [E].
Exercise 2.21 - [Schwarz reflection principle]: see Exercise 2.5.10 of [E].
Exercise 2.22 - [The heat equation]: Read §2.3 of [P2].

Exercise 2.23 - [Invariances for the heat equation]: see Exercise 2.5.12 of [E]

Exercise 2.24 - [Elementary solutions to the heat equation]: Check Proposition 2.3.1 of [P2]. In
particular, verify that u defined in (2.3.3) has the properties claimed and read the derivation given
in the notes.

Exercise 2.25 - [Solving the Cauchy problem for the heat equation]: Study the proof of Theorem
2.3.1 of [P2].

Exercise 2.26 - [Non homogeneous heat equation]: Read the proof of Theorem 2.3.2 of [E] (which
corresponds to Theorem 2.3.2 of [P2]).

Exercise 2.27 - [Non homogeneous heat equation with zero order term]: see Exercise 2.5.14 of [E].



Exercise 2.28 - [Mean value property for the heat equation]:

e Read the proof of Theorem 2.3.3 of [E].
e Check the key claim made at the end of the proof; that is,

2 2
1 Mdsdy:fl; Mdsdy:4

" Jew a s*

Exercise 2.29 - [Uniqueness by the energy method]: Using the multiplier u, show that there is

at most one solution u € Cf(ﬁT) of the Cauchy-Dirichlet problem for the non homogeneous heat
equation (see Theorem 2.3.10 of [E]).

Exercise 2.30 - [Regularity and estimates for the heat equation]: Read the proofs of the Theorems
2.3.8 and 2.3.9 of [E].

Exercise 2.31 - [Backwards uniqueness for the heat equation]: Read the proof of Theorem 2.3.11
of [E].

Exercise 2.32 - [The wave equation]: Read §2.4 of [P2].
Exercise 2.33 - [D’Alembert’s formula revisited]: see Exercise 2.5.19 of [E].
Exercise 2.34 - [Stokes’ rule]: see Exercise 2.5.18 of [E]

Exercise 2.35 - [Method of reflections]: Check the claims made in Observation 2.4.2 of the class
notes [P2]; that is that the formula

X+t

1 1
E[g(x+t)+g(x—t)]+§f h(y)dy x>t>0

x—t
u(x, t) =

t+x

1 1
E[g(t+x)—g(t—x)]+§f h(y)dy 0<x<t

t—x

gives a solution of the problem
Uy — Uxy = 0 in (0, +00) X (0, +00)
u(x,0) = g(x); ug(x,0) = h(x) per x € (0, +o0)
u(0,t) =0 per t € (0, +o0)

Exercise 2.36 - [Method of spherical means]: Prove Lemma 2.4.1 of [P2] concerning the reduction
to the Euler-Poisson-Darboux equation (see Lemma 2.4.1 of [E]).

Exercise 2.37 - [Poisson’s formula]: Finish the proof of Theorem 2.4.1 of [P2]; (see pp. 73-74 of [E]).
Exercise 2.38 - [Duhamel’s principle]: Prove Theorem 2.4.4 of [E] in the casesn = 1,2, 3.
Exercise 2.39 - [Energy methods]: Study the proofs of Theorems 2.4.3 and 2.4.4 of [P2].

Exercise 2.40 - [Equipartition of energy]: see Exercise 2.5.24 of [E].
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